Galois Theory for Beginners
John Stillwell
- Galois Theory for Beginners
- The American Mathematical Monthly
- Vol. 101, No. 1, Jan., 1994
- The American Mathematical Monthly
The goal of classical algebra was to
- express the roots of the general n th degree equation
- in terms of the coefficients
- $a_0, \cdots , a_{n-1}, $
${}$
- $a_0, \cdots , a_{n-1}, $
-
using a finite number of
-
operation $+, -, \times, \div$ and
-
radicals $\displaystyle \;\sqrt{\;\;} \;, \;\sqrt[3]{\;\;} \;,\; \cdots$
-
radical
-
Adjoining an element $\alpha$ to a field $F$,
-
$\alpha$ is called radical if
-
some (+) integer power $\alpha^m$ of $\alpha$
-
equals $f \in F$, in which case $\alpha$ may be
-
represented by the radical expression $\sqrt[m]{f}$
-
Field Exetention
-
$F(\alpha_1, \alpha_2, \cdots, \alpha_k)$
-
radical extenstion if
- each $\alpha_i$ is radical
$Q(x_1, x_2, \cdots, x_n)$
- symmetric $\;$ w.r.t. $\; x_1, x_2, \cdots, x_n$
Any permutation $\sigma$ of $x_1, x_2, \cdots, x_n$
\[\sigma f(x_1, \cdots, x_n) = f(\sigma x_1, \cdots, \sigma x_n)\]-
$\sigma (f+g) = \sigma f + \sigma g$
-
$\sigma (fg) = \sigma f \cdot \sigma g$
-
automorphism of $Q(x_1, x_2, \cdots, x_n)$