3 분 소요

John Stillwell

  • Galois Theory for Beginners
    • The American Mathematical Monthly
      • Vol. 101, No. 1, Jan., 1994

The goal of classical algebra was to

  • express the roots of the general n th degree equation
\[x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0 = 0\]
  • in terms of the coefficients
    • $a_0, \cdots , a_{n-1}, $
      ${}$
  • using a finite number of

    • operation $+, -, \times, \div$ and

    • radicals $\displaystyle \;\sqrt{\;\;} \;, \;\sqrt[3]{\;\;} \;,\; \cdots$

radical

  • Adjoining an element $\alpha$ to a field $F$,

  • $\alpha$ is called radical if

    • some (+) integer power $\alpha^m$ of $\alpha$

    • equals $f \in F$, in which case $\alpha$ may be

    • represented by the radical expression $\sqrt[m]{f}$

Field Exetention

  • $F(\alpha_1, \alpha_2, \cdots, \alpha_k)$

  • radical extenstion if

    • each $\alpha_i$ is radical

$Q(x_1, x_2, \cdots, x_n)$

  • symmetric $\;$ w.r.t. $\; x_1, x_2, \cdots, x_n$

Any permutation $\sigma$ of $x_1, x_2, \cdots, x_n$

\[\sigma f(x_1, \cdots, x_n) = f(\sigma x_1, \cdots, \sigma x_n)\]
  • $\sigma (f+g) = \sigma f + \sigma g$

  • $\sigma (fg) = \sigma f \cdot \sigma g$

  • automorphism of $Q(x_1, x_2, \cdots, x_n)$